* Step 1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            eq(ok(X1),ok(X2)) -> ok(eq(X1,X2))
            inf(mark(X)) -> mark(inf(X))
            inf(ok(X)) -> ok(inf(X))
            length(mark(X)) -> mark(length(X))
            length(ok(X)) -> ok(length(X))
            proper(0()) -> ok(0())
            proper(false()) -> ok(false())
            proper(nil()) -> ok(nil())
            proper(true()) -> ok(true())
            s(ok(X)) -> ok(s(X))
            take(X1,mark(X2)) -> mark(take(X1,X2))
            take(mark(X1),X2) -> mark(take(X1,X2))
            take(ok(X1),ok(X2)) -> ok(take(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {cons/2,eq/2,inf/1,length/1,proper/1,s/1,take/2,top/1} / {0/0,active/1,false/0,mark/1,nil/0,ok/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cons,eq,inf,length,proper,s,take,top} and constructors {0
            ,active,false,mark,nil,ok,true}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 2
          0_1() -> 3
          active_0(2) -> 2
          active_1(2) -> 5
          active_2(3) -> 6
          cons_0(2,2) -> 1
          cons_1(2,2) -> 3
          eq_0(2,2) -> 1
          eq_1(2,2) -> 3
          false_0() -> 2
          false_1() -> 3
          inf_0(2) -> 1
          inf_1(2) -> 4
          length_0(2) -> 1
          length_1(2) -> 4
          mark_0(2) -> 2
          mark_1(4) -> 1
          mark_1(4) -> 4
          nil_0() -> 2
          nil_1() -> 3
          ok_0(2) -> 2
          ok_1(3) -> 1
          ok_1(3) -> 3
          ok_1(3) -> 5
          ok_1(4) -> 1
          ok_1(4) -> 4
          proper_0(2) -> 1
          proper_1(2) -> 5
          s_0(2) -> 1
          s_1(2) -> 3
          take_0(2,2) -> 1
          take_1(2,2) -> 4
          top_0(2) -> 1
          top_1(5) -> 1
          top_2(6) -> 1
          true_0() -> 2
          true_1() -> 3
* Step 2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            eq(ok(X1),ok(X2)) -> ok(eq(X1,X2))
            inf(mark(X)) -> mark(inf(X))
            inf(ok(X)) -> ok(inf(X))
            length(mark(X)) -> mark(length(X))
            length(ok(X)) -> ok(length(X))
            proper(0()) -> ok(0())
            proper(false()) -> ok(false())
            proper(nil()) -> ok(nil())
            proper(true()) -> ok(true())
            s(ok(X)) -> ok(s(X))
            take(X1,mark(X2)) -> mark(take(X1,X2))
            take(mark(X1),X2) -> mark(take(X1,X2))
            take(ok(X1),ok(X2)) -> ok(take(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {cons/2,eq/2,inf/1,length/1,proper/1,s/1,take/2,top/1} / {0/0,active/1,false/0,mark/1,nil/0,ok/1,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cons,eq,inf,length,proper,s,take,top} and constructors {0
            ,active,false,mark,nil,ok,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))